
Probabilistic Neural Network Versus Ex-Post
Calibration For Prediction Uncertainty

Satya Borgohain
Monash University

satya.borgohain@monash.edu

Klaus Ackermann
Monash University

klaus.ackermann@monash.edu

Ruben Loaiza-Maya
Monash University

ruben.loaizamaya@monash.edu

Abstract

Probabilistic predictions from neural networks which account for predictive uncer-
tainty during classification is crucial in many real-world and high-impact decision
making settings. However, in practice most datasets are trained on non-probabilistic
neural networks which by default do not capture this inherent uncertainty. This
well-known problem has led to the development of post-hoc calibration procedures,
such as Platt scaling (logistic), isotonic and beta calibration, which transforms the
scores into well calibrated empirical probabilities. A plausible alternative to the
calibration approach is to use Bayesian neural networks, which directly models a
predictive distribution. Although they have been applied to images and text datasets,
they have seen limited adoption in the tabular and small data regime. In this paper,
we demonstrate that Bayesian neural networks yields competitive performance
when compared to calibrated neural networks and conduct experiments across a
wide array of datasets.

1 Introduction

Obtaining well calibrated estimates of probabilities is crucial, particularly in domains where decision
making could have direct consequences on human life such as medical diagnosis [1] and credit
approval [2] to name a few. In such scenarios, it is often not enough for a model to be accurate but
it also needs to capture and quantify the degree of uncertainty with which it makes such decisions.
However, many classification tasks still primarily rely on the classifier’s error rate (or accuracy) as the
key metric for its selection and deployment in real world use-cases which could lead to over/under
confident predictions. Coupled with class imbalance it poses challenges that given a set of features,
simply predicting class membership does not help us understand. Raw probabilities estimates provide
a more complete picture of the underlying decision making process by the classifiers and alternative
diagnostic metrics such as AUC-ROC, precision, recall and F1 certainly help in that regard [3].
Post-hoc calibration methods are one such approach which helps match the predicted probabilities
with the expected class distribution of the target. They take the output of any model and map the
score to the empirical probabilities [4].

Fairness and bias is another closely related field in machine learning and an arena that has received
much attention recently. Some of the methods predominantly used there involve thresholding in order
to de-bias the learned model against certain classes. However, finding optimal thresholds without
optimization are only possible if the classifiers are well-calibrated [4].

Preprint. Under review.

4 2 0 2
x1

3

2

1

0

1

2

3

x 2

(a) Ground Truth

4 2 0 2
x1

3

2

1

0

1

2

3

x 2

(b) Predicted Classes

4 2 0 2
x1

3

2

1

0

1

2

3

x 2

(c) Class Probabilities

0.0

0.2

0.4

0.6

0.8

1.0

P r
(y

i=
1)

Figure 1: BNN predictive results for simulation example. Panel (a) displays the true classes, with red
corresponding to observation with yi = 1 and blue to observations with yi = 0. Panel (b) presents the
BNN point predictions ŷi, with the same color scheme as panel (a). Panel (c) reports the classification
probabilities Pr(Yi = 1|xi,θ).

Bayesian neural networks (BNN) have recently emerged as an alternative approach to calibration
methods [5]. However, adding Bayesian layers to neural networks alone, does not solve the problem
of not receiving well calibrated output as shown in [6]. A BNN creates a probabilistic model by
linking the neural net to the conditional distribution of the outcome of interest. Thus, BNNs directly
allow the researcher to measure aleatoric uncertainty without the need for any post-hoc processing
steps. Because BNNs are probabilistic models with high-dimensional parameters spaces they are
estimated using approximate Bayesian methods such as variational inference [5]. The computation
of a posterior distribution implies that BNNs also have the ability to capture epistemic uncertainty.
Therefore, unlike calibration methods, the coherent probabilistic nature of BNNs implies that both
aleatoric and epistemic uncertainty are considered in the production of out-of-sample predictions.
Furthermore, methods such as SWA-Gaussian [7] which tries to approximate the posterior over the
parameters using information inherent in the trajectory of SGD have provably shown that Bayesian
methods do work well with neural networks to provide well-calibrated probabilities. Platt scaling has
also seen much adoption in large neural nets [8].

Despite the modelling benefits of BNNs, their uptake in machine learning has been relatively slow.
One of the main reasons is that, to our knowledge, no comprehensive studies have been undertaken
to demonstrate the effectiveness of BNNs over calibration approaches, particularly for tabular and
smaller datasets. The main purpose of this paper is to fill this gap in the literature. Although there have
been notable developments using Bayesian approaches in the field, they usually involve non-tabular
datasets with a large sample size.

Using a subset of the rich amalgam of datasets considered in [4], we investigate if BNNs outperform
post-hoc calibration methods in terms of probability calibration.

The key contributions of the paper can thus be summarized as follows:

• We illustrate that BNNs are a plausible alternative to obtaining well-calibrated empirical
probabilities for classification.

• We specifically demonstrate the applicability of BNNs in tabular, real-world, small data
regime.

2 Bayesian neural networks

2.1 The model

Denote as y = (y1, . . . , yN)
> a vector of N realizations of the binary variable yi ∈ {0, 1}, as xi =

(x1,i, . . . , xp,i)
> a vector of p covariates with explanatory power on yi, and set x =

(
x>1 , . . . ,x

>
N

)>
.

A Bayesian neural network (BNN) is a probabilistic model that links a neural network function

2

fNN (xi,θ) to the conditional distribution function of yi (see [9] for an overview on BNNs). For
the binary outcomes considered in this paper, we link fNN (xi,θ) to the conditional probability
distribution of yi via the logistic function g (a) = 1

1+e−a , so that

p (yi|xi,θ) = g [fNN (xi,θ)]
I(yi=1) {1− g [fNN (xi,θ)]}I(yi=0)

, (1)

where I (.) denotes an indicator function that is equal to one if its argument is true, and zero otherwise.
Because a BNN fully characterizes the conditional distribution p (yi|xi,θ), it has the ability to both,
produce point classification predictions as ŷi = arg maxY ∈{0,1} p(Y |θ,xi), and also capture the
level of classification uncertainty over those predictions as Pr(ŷi = yi|θ,xi).

Using the assumption that the elements in y are conditionally independent, we can then express the
likelihood function for the probabilistic neural network as

p (y|θ,x) =

N∏
i=1

p (yi|xi,θ) .

The main challenge in using a BNN is inference. The parameter vector θ has generally thousands
of elements, which often makes exact Bayesian estimation infeasible. In the following section we
discuss how approximate Bayesian estimation of BNNs can be applied instead.

2.2 Variational inference

In Bayesian estimation the density of interest is that of the parameters of the neural network con-
ditional on the data. This density is denoted here by p (θ|y) ∝ p (y|θ) p (θ), where p (θ) is the
prior density and x is dropped for ease of notation . Because of the high-dimensionality of θ, exact
Bayesian estimation methods are computationally costly, and as such not practical for the problem
at hand. Instead, we resort to variational inference (VI) methods, where a density qλ(θ) - member
of some parametric family of densities - is used to approximate p(θ|y), and where λ is a vector of
parameters known as variational parameters (see for instance [10] and [5]). Variational inference can
then be described as an optimization problem, where the aim is to minimize the Kullback-Leibler
divergence between qλ(θ) and p(θ|y) with respect to λ, defined as

KL(qλ(θ)||p(θ|y)) = Eqλ

[
log

qλ(θ)

p(θ|y)

]
.

This divergence can be re-written as KL(qλ(θ)||p(θ|y)) = log p(y) − L(λ), with p(y) =∫
p(θ)p(y|θ)dθ, h (θ) = p (y|θ) p (θ) and where L(λ) is known as the Evidence Lower Bound

(ELBO), given as
L(λ) = Eqλ [log h(θ)− log qλ(θ)] . (2)

Because log p(y) does not depend onλ, minimization of the Kullback-Leibler divergence with respect
to λ is equivalent to maximizing the ELBO; however, ELBO optimization is more computationally
feasible as it does not require evaluation of the intractable term log p(y).

Stochastic gradient ascent methods (SGA) can be applied for maximization of the ELBO, by first
setting an initial value λ(0) for λ, and then sequentially iterating over the expression

λ(i+1) = λ(i) + ρi ◦ ̂∇λ L(λ(i)), for i = 1, 2, . . . ,

where ρi = (ρi1, . . . , ρim)> denotes a vector of learning rates, ‘◦’ denotes the element-wise product

of two vectors, and ̂∇λ L(λ(i)) is an unbiased estimate of the gradient of L(λ) evaluated at λ = λ(i).
Here, the learning rates are set according to the ADAM method proposed by [11].

The selection of an unbiased and low variance estimate of the ELBO gradient is key to the success
of VI. We follow [5] and employ the so called “reparametrization trick” . This approach requires
a generative formula θ = k(ε,λ) from the specific approximating density qλ, where the vector ε
has density fε which does not depend on λ. The reparametrization trick then allows to re-write the
ELBO as

L(λ) = Efε [log h(k(ε,λ))− log qλ(k(ε,λ))] . (3)

3

By differentiating (3), the ELBO gradient can be expressed as

∇λ L(λ) = Efε

[
∂θ

∂λ

>
{∇θ log h(θ)−∇θ log qλ(θ)}

]
. (4)

Then, an unbiased low variance estimate of the ELBO gradient can be computed by estimating the
expectation in (4) using one random draw from fε.

The last component of VI is the selection of an adequate approximating family. We follow [12] and
employ a Gaussian approximation with a factor covariance structure, so that

qλ(θ) = φm
(
θ;µ, BB′ +D2

)
, (5)

where φm (x;µ,Σ), denotes the m−variate Gaussian density with mean µ and covariance Σ, D is a
diagonal matrix with diagonal elements d = (d1, . . . , dm)

>, B is an m×K matrix, K < m denotes
the number of factors, and λ = (µ>,d>, vech(B)>)>, where vech denotes the half-vectorization
operator of a rectangular matrix. With this approximation, the generative formula needed for the
reparametrization trick is θ = k(ε,λ) = µ+Bz +Dη, where ε =

(
z>,η>

)>
.

The terms needed to perform SGA are ∂θ
∂λ , ∇θ log qλ(θ) and ∇θ log h(θ). The first two terms were

provided in [12] for the family of approximations used here. The third term can be re-written as

∇θ log h(θ) = ∇θ log p (y|θ) +∇θ log p (θ) . (6)

We employ uniform priors for θ, which implies that ∇θ log p (θ) = 0. The remaining term,
∇θ log p (y|θ), can be computed as

∇θ log p (y|θ) =
∑

{i:yi=1}

∇θfNN (xi,θ)

−
∑
i

g [fNN (xi,θ)]∇θfNN (xi,θ) ,

where ∇θfNN (xi,θ) is the gradient of the neural network function, which can be evaluated using
any readily available back propagation algorithm.

2.3 Toy example

To provide some intuition about how the BNN in Section 2.1 can be used in practice, we applied it
to a simple simulated data set. We started by generating 10000 realizations of the i.i.d covariates
xi,1 ∼ N(0, 1) and xi,2 ∼ N(0, 1). Subsequently, we generated the corresponding 10000 realizations
of yi from the true data generating process (DGP)

yi = I(xi,1 < t(xi,2) + εi), (7)

where εi ∼ N(0, 1) is an i.i.d Gaussian error, while the function t() is the Yeo-Johnson transformation
[13] with parameter−1, whose role is to induce non-linearity in the way the two covariates determine
yi. In order to learn the true DGP in (7), we applied the BNN to a random subset of 8000 observations,
and used the remaining 2000 observations to produce out-of-sample predictions. For the choice of
fNN (xi,θ) we used a feedforward neural network with two nodes and three layers.

Panel (a) in Figure 1 presents the true binary categories of the out-of-sample points as a function
of the covariates. The red dots indicate the observations for which yi = 1, while the blue dots
display the observations for which yi = 0. Although there is some overlap in the classification
regions, the red points are concentrated in the top-left quadrant while the blue dots are concentrated
in the bottom-right. Panel (b) in Figure 1 presents the point predictions ŷi from the neural network.
The point predictions indicate that there is a clear separation threshold. However, we know from
panel (a) that the closer the observations are to the threshold, the more classification overlap will be
observed and thus the higher the classification uncertainty. Via the computation of the probabilities
Pr(Yi = 1|xi,θ), the BNN naturally allow us to measure the classification uncertainty. These
probabilities are presented in panel (c) in Figure 1, where the color scale of the dots indicates the
classification uncertainty, with green dots indicating higher uncertainty (Pr(Yi = 1|xi,θ) ≈ 0.5).
The plot indicates that observations located in the top-left corner are classified as ŷi = 1 with high

4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

os
iti

ve
s

Reliability Plot

Perfectly calibrated
Uncalibrated (0.376)
Var Bayes (0.375)
Logistic (0.392)
Isotonic (0.402)
Beta (0.378)

0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted value

0

100

200

300

400

500

600

700

Co
un

t

var_bayes
sigmoid

isotonic
betaFigure 2: Reliability diagram for the Toy dataset. Also known as Calibration curves, they help

visually determine the degree of calibration in probabilistic forecast between different models. Here
the x-axis represents the predicted probability and y-axis represents the observed relative frequency
of membership to class [14]. The closer the curves are to perfectly calibrated line (diagonal) the
better. The log-losses are denoted in the legend beside each method. We observe here that BNN
performs better than the other methods.

.

certainty as Pr(Yi = 1|xi,θ) ≈ 1. Similarly, observations located in the bottom-right corner are
classified as ŷi = 0 with high certainty as Pr(Yi = 1|xi,θ) ≈ 0. Finally, as the observations get
closer to the threshold in the middle, the classification uncertainty increases, which indicates the BNN
is able to identify the high probability of class overlap in that region. Figure 2 shows the reliability
diagram for the same highlighting different calibration methods which we discuss in Section 3.

3 Post-Hoc probability calibration

We draw upon the seminal work by [4] to compare our findings with the recent advances in the
literature and follow their benchmark methodology. We benchmark our approach to well established
calibration procedures in the literature. The goal of any calibration method is given the output score s
of a classifier, to correctly represent the empirical probabilities of a given example belonging to a
class. These empirical probabilities can be visualised using reliability diagrams shown in figure 2.
For a given score range from 0.9 − 1 on the test set, 90 to 100 percent of the examples should be
members of the class.

Isotonic calibration is a non parametric method that uses the ranking of the output of any classifier
to assign bins for mapping from score to probability based on how well a the classifier has ranked
the examples [15, 16]. This approach requires enough samples for any given bin, which for small
datasets causes this procedure to overfit[4].

Logistic calibration was introduced by [17] for support vector machines. It takes the form of
µ(s, γ, δ) = 1

1+1/exp(γ·s+δ) , where γ and δ are real valued parameters. This procedure is commonly
referred to as Platt scaling. [4] showed that this procedure has the tendency to lead to worse results
after calibration, compared to only relying on the raw output of a given classifier.

Beta calibration was introduced by [4], where the underlying modeling assumption is the beta
distribution, a probability distribution bound to the interval [0, 1]. In general, the beta distribution
is used for modeling the behaviour of proportions or percentages, and therefore suited to model the
score distribution for a given class.

5

Negative log-likelihood (NLL), also referred to as cross-entropy or log-loss, gives us a measure of
how well the methods compare. It penalizes predictions that appear to be more confident than they
are. In line with the literature [4], we use log-loss as our key metric. A measure of accuracy would
require the setting of a threshold and might therefore mask the true probabilities of predictions.

4 Experiments

In order to minimize inductive biases imparted by any complex architectural choice, we consider a
simple feedforward neural network consisting of just 2 hidden layers with 4 ReLU units each. We
use ADAM [11] for parameter optimization in both the networks with a global learning rate of 10−3

or 10−2 and the following hyperparameters for the same: β1 = 0.9, β2 = 0.999 and ε = 10−7.
Minimal hyperparameter optimization was done as we mostly selected the default values1.

We devise the following strategy to train both the networks: First, we randomly split the dataset
between training (80%) and test (20%) followed by further splitting the train set into validation and
calibration sets respectively. For each set, we perform stratified sampling to preserve the original
class distribution and standardize the feature matrix with the mean and standard deviation of the
train set (avoiding data leakage). During the validation stage, we monitor the cross entropy loss in
order to find the optimal number of epochs (τ), which correspond to the minimum validation loss,
for each model. Thereafter, we train both the models to τ and use the base neural network to further
calibrate its output probabilities with the post-hoc methods as per Section 3. We also observed from
our experiments that on an average, the standard feedforward neural network needed relatively fewer
epochs to converge when compared to the BNN and set their maximum number of epochs during the
validation stage to be approximately half that of BNN. We note that early stopping as a regularizing
strategy proved to be difficult as the loss curves (particularly for BNNs) sometimes exhibit the double
descent phenomena [18] to varying degrees.

Furthermore, we employ a similar strategy as [4] and binarize the target variable, considering the
majority class as 1 and the rest to be 0, in order to convert from a multi-class to binary classification
setting. We also note that calibrated neural networks are exposed to roughly ∼ 20% more data points
than BNN due to their use of calibration set. This also illustrates that BNNs can still work remarkably
well given fewer data points than its counterparts.

We implement our code using the TensorFlow framework in Python to conduct the experiments 2.
In particular, we make use of the fast tensor computation for the Jacobian of errors accessed via the
gradient tape on GPU.

4.1 Datasets

We evaluate the calibration of all the models on 20 well-known datasets from the UCI Machine
Learning Repository [19]. Here we consider datasets representing domains such as financial, medical,
social, just to name a few, as listed under Table 1.

Neural networks typically require training samples orders of magnitude more than those of the
UCI datasets. Although theoretically, small sample sizes makes the network prone to overfitting,
we empirically did not observe any drastic effect on their performances in part due to the simple
architecture with a relatively small number of parameters. We also note that due to the stochastic
nature of our learning algorithms they are sensitive to initialization of the parameters.

4.2 Evaluation

We observe that BNN yields competitive performance (and on average outperforms) when compared
to the other calibration methods across the datasets as outlined in Table 2. As expected, BNN also
performs better than the uncalibrated vanilla neural network in most cases. Additionally, we also track
other metrics such as Brier score and Expected Calibration Error (ECE) with a bin size of 10. Brier
score provides the mean squared error for a probabilistic forecast and is given by 1

N

∑N
i=1(fi − oi),

1The computation was performed under Ubuntu 18.04 using a Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz
and a NVIDIA Quadro P6000 as GPU

2Github link removed for anonymous peer review.

6

Table 1: UCI datasets for used in the experiments.

Name Features Samples Attribute Type(s) Domain

Abalone 8 4177 Categorical, Integer, Real Life (Marine)
Balance Scale 4 625 Categorical Social
Credit Approval 15 653 Categorical, Integer, Real Financial
German Credit 20 1000 Categorical, Integer Financial
Ionosphere 34 351 Integer, Real Physical
Image Segmentation 19 2310 Real N/A
Landsat Satellite 36 6435 Integer Physical
Letter Recognition 16 35000 Integer Computer
Mfeat (Karhunen) 64 2000 Integer, Real Computer
Mfeat (Morphological) 6 2000 Integer, Real Computer
Mfeat (Zernike) 47 2000 Integer, Real Computer
Mushroom 22 8124 Categorical Life
Optical Digits Recognition 64 5620 Integer Computer
Page Blocks 10 5473 Integer, Real Computer
Spambase 57 4601 Integer, Real Computer
Vehicle 18 946 Integer N/A
Waveform-5000 40 5000 Real Physical
WDBC 30 569 Real Life (Cancer)
WPBC 33 194 Real Life (Cancer)
Yeast 8 1484 Real Life (Proteins)

where fi are probabilities and oi are observed classes. ECE is a popular binning based approach
to measuring calibration error which is quite sensitive to the choice of bins and ultimately not as
strongly reliable [20]. Figure 3 illustrates the performance of each model on two of the datasets.
Interestingly, we also notice for a few datasets that calibrating with the post-hoc methods sometimes
leads to further miscalibration and higher log-loss.

To establish whether the differences between the methods are statistically significant, we follow
[21] and perform Friedman test across all datasets with the null hypothesis (H0) as there being no
significant differences in performance between the classifiers. Considering a significance level of
0.05, we reject the null with a p-value of 0.000119 along with a test statistic of 23.13 and perform a
post-hoc analysis based on Wilcoxon-Holm test to further analyse their pairwise differences. Figure 4
illustrates the critical difference diagram with pairwise significance. Here we observe that BNN (Var
Bayes) have the highest rank as compared to the other methods. However, we also note that pairwise
differences between BNN, Uncalibrated, Beta and Logistic are not as significant as that between
BNN and Isotonic. Overall BNNs provide competitive, if not better, performance as its calibrated
counterparts. Interestingly, what [4] observed for Beta calibration when applied to Adaboost and
Naive Bayes classifiers does not perfectly hold for neural nets as evident from our experiments.

5 Conclusion

In this paper, we propose the use of BNNs as a plausible alternative to obtain well-calibrated
probabilities when compared with post-hoc calibration methods such as platt scaling, isotonic and
beta calibration for tabular datasets.

We performed extensive experiments on 20 datasets using the same neural network architecture as
our underlying model. With the the normal neural network implementation we applied the common
calibration techniques. Our results show that our proposed method works provably well for tabular
datasets with small sample size. We made use of recent advances in fast gradient calculation within
TensorFlow framework to calculate the full Jacobian matrix with respect to the parameters, as
required for Variational Bayes Inference. Albeit, certain datasets required a larger number of epochs
for convergence in the Variational framework. Future research will investigate the impact of different
priors such as Horseshoe on the parameters and its impact on convergence and calibration.

7

Balance Scale

2 1 0 1 2

2

1

0

1

2

Ground Truth

2 1 0 1 2

2

1

0

1

2
log-loss=0.0693
ECE=0.0284
brier score=0.0150

Variational Bayes

2 1 0 1 2

2

1

0

1

2
log-loss=0.0981
ECE=0.0613
brier score=0.0202

Uncalibrated

2 1 0 1 2

2

1

0

1

2
log-loss=0.0808
ECE=0.0430
brier score=0.0176

Beta

2 1 0 1 2

2

1

0

1

2
log-loss=0.0893
ECE=0.0514
brier score=0.0161

Logistic

2 1 0 1 2

2

1

0

1

2
log-loss=0.0922
ECE=0.0531
brier score=0.0278

Isotonic

Mushroom

4 2 0 2 4

2

1

0

1

2

3

4

5
Ground Truth

4 2 0 2 4

2

1

0

1

2

3

4

5 log-loss=0.0332
ECE=0.0004
brier score=0.0061

Variational Bayes

4 2 0 2 4

2

1

0

1

2

3

4

5 log-loss=0.0359
ECE=0.0027
brier score=0.0120

Uncalibrated

4 2 0 2 4

2

1

0

1

2

3

4

5 log-loss=0.0377
ECE=0.0077
brier score=0.0129

Beta

4 2 0 2 4

2

1

0

1

2

3

4

5 log-loss=0.0377
ECE=0.0077
brier score=0.0129

Logistic

4 2 0 2 4

2

1

0

1

2

3

4

5 log-loss=0.0377
ECE=0.0077
brier score=0.0129

Isotonic

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Predictions on the Test set for Balance Scale and Mushroom Datasets. The colour scale
represents probabilities between 0− 1. Here we perform PCA on the original feature space and plot
on the two principle axes.

CD

5 4 3 2 1

2.0952 Var Bayes
2.6667 Beta
2.7619 Uncalibrated

3.1905Logistic

4.2857Isotonic

Figure 4: Critical difference diagram for log-loss along with ranks for each method.

8

Table 2: Log-loss for each dataset. The best method is marked in bold for each row.

Methods

Uncalibrated Beta Isotonic Logistic Var Bayes
Dataset

Abalone 0.597890 0.598148 0.691808 0.602227 0.615603
Balance Scale 0.098068 0.080771 0.092153 0.089347 0.069333
Credit Approval 0.491384 0.522863 0.897678 0.437511 0.457618
German Credit 0.525405 0.517368 0.532982 0.517461 0.565519
Ionosphere 0.385311 0.310725 0.334547 0.308752 0.330256
Image Segmentation 0.410117 0.410120 0.410120 0.410120 0.012053
Landsat Satellite 0.549391 0.549391 0.549391 0.549391 0.065981
Letter Recognition 0.015198 0.015066 0.015491 0.022324 0.012077
Mfeat (Karhunen) 0.056259 0.052115 0.165397 0.121016 0.067857
Mfeat (Morphological) 0.325083 0.325096 0.325096 0.325096 0.000206
Mfeat (Zernike) 0.092498 0.070683 0.166497 0.048465 0.073144
Mushroom 0.035914 0.037741 0.037741 0.037741 0.033184
Optical Digits Recognition 0.086171 0.056051 0.086846 0.063662 0.047854
Page Blocks 0.071376 0.072884 0.091231 0.082372 0.085377
Spambase 0.225907 0.211673 0.212747 0.213790 0.235523
Toy 0.376422 0.377564 0.401984 0.391937 0.375313
Vehicle 0.107625 0.331832 0.310363 0.390933 0.091739
Waveform-5000 0.239015 0.234735 0.240671 0.265519 0.238321
WDBC 0.080406 0.164898 0.156011 0.176233 0.070994
WPBC 0.584846 0.614227 1.777795 0.594910 0.541680
Yeast 0.594895 0.583243 0.806812 0.561925 0.569832

Rank 2.7619 2.6667 4.2857 3.1905 2.0952

6 Ethical and societal implication

BNNs could be applied across many domains where neural networks are starting to be heavily utilized
in real world settings and strict 0 or 1 outcomes are not desired. Although for most machine learning
researchers it is clear that output scores obtained via softmax, for example, do not represent true
probabilities, many practitioners interpret the same as otherwise. This becomes especially critical,
when decision threshold are set, that have major consequences for an individual. In areas such as,
bail or no bail, treatment with some medicine or not, having wrongly calibrated models could lead to
detrimental or harmful outcomes [22]. Thresholding is also used to try to make machine learning
predictions more fair, by setting different thresholds based on protected attributes such as race or
gender [23]. Again in such applications, it is highly important that the thresholds represent actual
probabilities rather than a ranking. Similarly, in recent years governments have started to scarcely
assign resources to its citizen based on algorithmic decisions to make the most efficient use of their
limited resources. Hence it becomes increasingly important that resource allocation prioritizes those
who truly need such aid.

Alternatively, having well calibrated neural networks could also lead to overconfidence and over
reliance on algorithms by decision and policy makers. We would encourage further work of the rela-
tionship of calibrated threshold in real world scenarios to fully understand the impact miscalibration
has. Nevertheless, we hope our work helps counter these issues and ultimately creates a positive
social impact across domains.

References
[1] Yingxiang Huang, Wentao Li, Fima Macheret, and Rodney A Gabriel. OUP accepted manuscript.

Journal of the American Medical Informatics Association, 0(0):1–13, 2020.

[2] Artem Bequé, Kristof Coussement, Ross Gayler, and Stefan Lessmann. Approaches for credit
scorecard calibration: An empirical analysis. Knowledge-Based Systems, 134:213–227, 2017.

9

[3] Max Kuhn, Kjell Johnson, et al. Applied predictive modeling, volume 26. Springer, 2013.

[4] Meelis Kull, Telmo De Menezes, Silva Filho, Peter Flach, Telmo Silva Filho, and Peter Flach.
Beta calibration: a well-founded and easily implemented improvement on logistic calibration
for binary classifiers. Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, 54:623–631, 2017.

[5] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[6] Hector J. Hortua, Riccardo Volpi, Dimitri Marinelli, and Luigi Malagò. Parameters Estimation
for the Cosmic Microwave Background with Bayesian Neural Networks. pages 1–21, 2019.

[7] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. Advances in Neural
Information Processing Systems, 32:13153–13164, 2019.

[8] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pages 1321–1330. PMLR, 2017.

[9] Vikram Mullachery, Aniruddh Khera, and Amir Husain. Bayesian neural networks. arXiv
preprint arXiv:1801.07710, 2018.

[10] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Victor M-H Ong, David J Nott, and Michael S Smith. Gaussian variational approximation with a
factor covariance structure. Journal of Computational and Graphical Statistics, 27(3):465–478,
2018.

[13] In-Kwon Yeo and Richard A Johnson. A new family of power transformations to improve
normality or symmetry. Biometrika, 87(4):954–959, 2000.

[14] Jochen Bröcker and Leonard A Smith. Increasing the reliability of reliability diagrams. Weather
and forecasting, 22(3):651–661, 2007.

[15] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass
probability estimates. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02, page 694–699, New York, NY, USA, 2002.
Association for Computing Machinery.

[16] Tom Fawcett and Alexandru Niculescu-Mizil. Pav and the roc convex hull. Machine Learning,
68(1):97–106, 2007.

[17] JC Platt. Probabilities for sv machines. advances in large margin classifiers (pp. 61–74), 2000.

[18] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. arXiv preprint
arXiv:1912.02292, 2019.

[19] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[20] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29, 2015.

[21] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, 7:1–30, 2006.

[22] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[23] Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in supervised
learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

10

	Introduction
	Bayesian neural networks
	The model
	Variational inference
	Toy example

	Post-Hoc probability calibration
	Experiments
	Datasets
	Evaluation

	Conclusion
	Ethical and societal implication

